Bell Work

Use your calculator to identify the local max/min. $f(x) = 2x^3 + 4x^2 - 3$

Write the cubic function whose graph is shown.

Write the cubic function given the points. (-4, 0), (0, 10), (2, 0), (5, 0)

Write the cubic function given the points. (-3, 0), (-1, 6), (1, 0), (2, 0)

Finite Differences

When the *x*-values in a data set are equally spaced, the differences of consecutive *y*-values are called **finite differences**. Recall from Section 2.4 that the first and second differences of $y = x^2$ are:

Properties of Finite Differences

- 1. If a polynomial function y = f(x) has degree *n*, then the *n*th differences of function values for equally-spaced *x*-values are nonzero and constant.
- 2. Conversely, if the *n*th differences of equally-spaced data are nonzero and constant, then the data can be represented by a polynomial function of degree *n*.

Use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

x	1	2	3	4	5	6	7
f(x)	1	4	10	20	35	56	84

Use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

x	-3	-2	-1	0	1	2
f(x)	6	15	22	21	6	-29