Bell Work

Find the zeros by factoring.

$$
f(x)=x^{2}+10 x+25
$$

Solving a Polynomial Equation by Factoring

Solve the equation.

$$
2 x^{3}-12 x^{2}+18 x=0
$$

In Example 1, the factor $x-3$ appears more than once. This creates a repeated solution of $x=3$. Note that the graph of the related function touches the x-axis (but does not cross the x-axis) at the repeated zero $x=3$, and crosses the x-axis at the zero $x=0$. This concept can be generalized for a polynomial function f as follows.

- When a factor $x-k$ of $f(x)$ is raised to an odd power, the graph of f crosses the x-axis at $x=k$.
- When a factor $x-k$ of $f(x)$ is raised to an even power, the graph of f touches the x-axis (but does not cross the x-axis) at $x=k$.

Check

Solving a Polynomial Equation by Factoring

Solve the equation.

$$
4 x^{4}-40 x^{2}+36=0
$$

Solving a Polynomial Equation by Factoring

Solve the equation.

$$
-3 n^{3}+24 n^{2}-48 n=0
$$

Find the Zeros of a Polynomial
Find the zeros then sketch the graph.

$$
f(x)=-2 x^{4}+16 x^{2}-32
$$

Find the Zeros of a Polynomial
Find the zeros then sketch the graph.

$$
f(x)=x^{3}+x^{2}-6 x
$$

Find the Zeros of a Polynomial
Find the zeros then sketch the graph.

$$
f(x)=-x^{3}-2 x^{2}+9 x+18
$$

Find the Zeros of a Polynomial
Find the zeros then sketch the graph.

$$
f(x)=3 x^{4}-6 x^{2}+3
$$

