Bell Work

Common Polynomial Functions			
Degree	Type	Standard Form	Example
0	Constant	$f(x)=a_{0}$	$f(x)=-14$
1	Linear	$f(x)=a_{1} x+a_{0}$	$f(x)=5 x-7$
2	Quadratic	$f(x)=a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=2 x^{2}+x-9$
3	Cubic	$f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=x^{3}-x^{2}+3 x$
4	Quartic	$f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$	$f(x)=x^{4}+2 x-1$

Identifying Polynomial Functions

Determine whether each function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
a. $f(x)=-2 x^{3}+5 x+8$
b. $g(x)=-0.8 x^{3}+\sqrt{2} x^{4}-12$

Determine whether each function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
c. $h(x)=-x^{2}+7 x^{-1}+4 x$
d. $k(x)=x^{2}+3^{x}$

Evaluating a Polynomial Function

Evaluate $f(x)=2 x^{4}-8 x^{2}+5 x-7$ when $x=3$.

The end behavior of a function is the behavior of the graph as x approaches positive infinity ($+\infty$) or negative infinity $(-\infty)$. For a polynomial function, the end behavior is determined by the function's degree and the sign of its leading coefficient.

KEY IDEA

End Behavior of Polynomial Functions
Degree: odd
Leading coefficient: positive

Degree: even
Leading coefficient: positive

Degree: odd
Leading coefficient: negative

Degree: even
Leading coefficient: negative

Describe the end behavior of

$f(x)=-0.5 x^{4}+2.5 x^{2}+x-1$.

Describe the end behavior of

$$
f(x)=0.25 x^{3}-x^{2}-1
$$

Graphing Polynomial Functions

$$
f(x)=-x^{3}+x^{2}+3 x-3
$$

Graph the function.

$$
f(x)=x^{4}-x^{3}-4 x^{2}+4
$$

