KEY IDEA

Solving Quadratic Equations

By graphing
Find the x-intercepts of the graph of the related function $y=a x^{2}+b x+c$.

Using square roots Write the equation in the form $u^{2}=d$, where u is an algebraic expression, and solve by taking the square root of each side.

By factoring
Write the quadratic equation $a x^{2}+b x+c=0$ in factored form and solve using the Zero-Product Property.

Solve each equation by graphing.

$$
x^{2}-x-6=0
$$

Solve each equation by graphing.

$$
-2 x^{2}-2=4 x
$$

Solve each equation by graphing.

$$
-12 x+9=-4 x^{2}
$$

Solve each equation by graphing.

$$
-\frac{1}{2} x^{2}=20-6 x
$$

Solving Quadratic Equations Algebraically

When solving quadratic equations using square roots, you can use properties of square roots to write your solutions in different forms. When a radicand in the denominator of a fraction is not a perfect square, you can multiply the fraction by an appropriate form of 1 to eliminate the radical from the denominator. This process is called rationalizing the denominator.

Solve each equation using square roots.

$$
4 x^{2}-31=49
$$

Solve each equation using square roots.

$$
3 x^{2}+9=0
$$

Solve each equation using square roots.

$$
\frac{2}{3} x^{2}+14=20
$$

Solve each equation using square roots.

$$
\frac{2}{5}(x+3)^{2}=5
$$

Solve each equation using square roots.

$$
\frac{3}{4}(x+1)^{2}=10
$$

