Exploring Properties of Parabolas

An axis of symmetry is a line that divides a parabola into mirror images and passes through the vertex. Because the vertex of $f(x)=a(x-h)^{2}+k$ is (h, k), the axis of symmetry is the vertical line $x=h$.

Previously, you used transformations to graph quadratic functions in vertex form. You can also use the axis of symmetry and the vertex to graph
 quadratic functions written in vertex form.

Graph $f(x)=-2(x+3)^{2}+4$. Label the vertex and axis of symmetry.

Graph $f(x)=0.5(x+4)^{2}-2$. Label the vertex and axis of symmetry.

KEY IDEA

Properties of the Graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b x}+\boldsymbol{c}$

$$
y=a x^{2}+b x+c, a>0 \quad y=a x^{2}+b x+c, a<0
$$

- The parabola opens up when $a>0$ and opens down when $a<0$.
- The graph is narrower than the graph of $f(x)=x^{2}$ when $|a|>1$ and wider when $|a|<1$.
- The axis of symmetry is $x=-\frac{b}{2 a}$ and the vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.
- The y-intercept is c. So, the point $(0, c)$ is on the parabola.

Graph $f(x)=3 x^{2}-6 x+1$. Label the vertex and axis of symmetry.

Graph $f(x)=x^{2}+2 x-1$. Label the vertex and axis of symmetry.

A parabola passes through the points $(-1,4)$ and $(4,4)$. Find the axis of symmetry.

