Exploring Properties of Parabolas

An **axis of symmetry** is a line that divides a parabola into mirror images and passes through the vertex. Because the vertex of $f(x) = a(x - h)^2 + k$ is (h, k), the axis of symmetry is the vertical line x = h.

Previously, you used transformations to graph quadratic functions in vertex form. You can also use the axis of symmetry and the vertex to graph quadratic functions written in vertex form.

Graph $f(x) = -2(x + 3)^2 + 4$. Label the vertex and axis of symmetry.

Graph $f(x) = 0.5(x + 4)^2 - 2$. Label the vertex and axis of symmetry.

KEY _

KEY IDEA

Properties of the Graph of $f(x) = ax^2 + bx + c$

$$y = ax^2 + bx + c, a > 0$$

$$y = ax^2 + bx + c, a < 0$$

- The parabola opens up when a > 0 and opens down when a < 0.
- The graph is narrower than the graph of $f(x) = x^2$ when |a| > 1 and wider when |a| < 1.
- The axis of symmetry is $x = -\frac{b}{2a}$ and the vertex is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- The y-intercept is c. So, the point (0, c) is on the parabola.

Graph $f(x) = 3x^2 - 6x + 1$. Label the vertex and axis of symmetry.

Graph $f(x) = x^2 + 2x - 1$. Label the vertex and axis of symmetry.

A parabola passes through the points (-1, 4) and (4, 4). Find the axis of symmetry.