KEY IDEAS

Horizontal Stretches and Shrinks

The graph of $y=f(a x)$ is a horizontal stretch or shrink by a factor of $\frac{1}{a}$ of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.
Multiplying the inputs by a before evaluating the function stretches the graph horizontally (away from the y-axis) when $0<a<1$, and shrinks the graph horizontally (toward the y-axis) when $a>1$.

Vertical Stretches and Shrinks

The graph of $y=a \cdot f(x)$ is a vertical stretch or shrink by a factor of a of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.
Multiplying the outputs by a stretches the graph vertically (away from the x-axis) when $a>1$, and shrinks the graph vertically (toward the x-axis) when $0<a<1$.

$f(x)=|x-3|-5$; vertical stretch by a factor of 2

$$
f(x)=|x|-3 \text {; vertical shrink by a factor of } \frac{1}{3}
$$

$f(x)=4 x-2$; vertical shrink by a factor of $\frac{1}{2}$

$f(x)=\frac{1}{3} x+7$; vertical stretch by a factor of 2

$f(x)=|x-3|-5$; horizontal shrink by a factor of $\frac{1}{3}$
$f(x)=|2 x|-6$; horizontal stretch by a factor of 2
$f(x)=3 x+1$; horizontal shrink by a factor of $\frac{1}{4}$

Let the graph of g be a vertical shrink by a factor of 0.25 followed by a translation 3 units up of the graph of $f(x)=x$. Write a rule for g.

