

Using Function Notation to Evaluate and Interpret

You learned that a linear function can be written in the form y = mx + b. By naming a linear function *f*, you can also write the function using **function notation**.

f(x) = mx + b Function notation

The notation f(x) is another name for y. If f is a function, and x is in its domain, then f(x) represents the output of f corresponding to the input x. You can use letters other than f to name a function, such as g or h.

Evaluate
$$f(x) = -4x + 7$$
 when $x = 2$ and $x = -2$.

Evaluate f(x) = 2x + 1 when $x = -4, 0, \frac{1}{2}$

Evaluate g(x) = -x - 1 when $x = -4, 0, \frac{1}{2}$

EXAMPLE 2 Interpreting Function Notation

Let f(t) be the outside temperature (in degrees Fahrenheit) t hours after 6 A.M. Explain the meaning of each statement.

a.
$$f(0) = 58$$
 b. $f(6) = n$ **c.** $f(3.5) < f(9)$

Solving for the Independent Variable

For $h(x) = \frac{2}{3}x - 5$, find the value of x for which h(x) = -7.

Solving for the Independent Variable

For $g(x) = \frac{1}{3}x - 2$, find the value of x for which g(x) = -4.

Solving for the Independent Variable

For f(x) = 6x + 9, find the value of x for which f(x) = 21.

$\operatorname{Graph} f(x) = 2x + 5.$

Graph f(x) = 3x - 2.