Bell Work

## Using Function Notation to Evaluate and Interpret

You learned that a linear function can be written in the form $y=m x+b$. By naming a linear function $f$, you can also write the function using function notation.

$$
f(x)=m x+b \quad \text { Function notation }
$$

The notation $f(x)$ is another name for $y$. If $f$ is a function, and $x$ is in its domain, then $f(x)$ represents the output of $f$ corresponding to the input $x$. You can use letters other than $f$ to name a function, such as $g$ or $h$.

Evaluate $f(x)=-4 x+7$ when $x=2$ and $x=-2$.

Evaluate $f(x)=2 x+1$ when $x=-4,0,1 / 2$

Evaluate $\mathrm{g}(x)=-x-1$ when $x=-4,0,1 / 2$

## EXAMPLE 2

Let $f(t)$ be the outside temperature (in degrees Fahrenheit) $t$ hours after 6 A.m. Explain the meaning of each statement.
a. $f(0)=58$
b. $f(6)=n$
c. $f(3.5)<f(9)$

## Solving for the Independent Variable

For $h(x)=\frac{2}{3} x-5$, find the value of x for which $h(x)=-7$.

## Solving for the Independent Variable

For $g(x)=\frac{1}{3} x-2$, find the value of x for which $\mathrm{g}(x)=-4$.

## Solving for the Independent Variable

For $\mathrm{f}(x)=6 x+9$, find the value of x for which $\mathrm{f}(x)=21$.

Graph $f(x)=2 x+5$.

Graph $f(x)=3 x-2$.

